O.P.Code: 20EC0441

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Regular & Supplementary Examinations December-2024 DIGITAL IMAGE PROCESSING

(Electronics & Communication Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Discuss the method of image sensing and acquisition along with suitable CO1 L3 **6M** diagrams.
 - b Calculate the number of bits required to store a digitized image if image CO1 **6M** sizes are 8×8, 32×32 for 8-bit pixel depth.

OR

- a Illustrate about the adjacency, connectivity, regions and boundaries. CO₁ L₂ **6M**
 - **b** Let $V = \{1\}$, Compute the 4-adjacency, 8-adjacency and different paths between two pixels (1,1) and (3,3) for the center pixel in the given CO1 L3 **6M** image.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 1 & 1 \\ 7 & 1 & 9 \end{array} \right]$$

UNIT-II

- a Define 2D Discrete Cosine Transform with equations. CO₂ L1**6M b** Deduce the Discrete Cosine Transform basis matrix for N = 4CO₂ **6M** OR a Compute the Haar basis for N=2. CO₂ L3 **6M**
- **b** Compare different Image Transforms. UNIT-III

CO₂ L2 **6M**

L2

6M

a Define negative image transformation and illustrate with suitable CO3 example.

b Explain the Intensity level slicing operation and bit extraction operation **CO3 6M** in image enhancement with suitable example.

a Write brief notes on CMY and CMYK color models. CO₃ L₁ **6M b** Explain the method of converting colors from RGB to HIS. **L2** CO₃ **6M**

UNIT-IV

a Explain the Gaussian and Rayleigh noises with their PDF expressions. **CO4** L2 **6M** L2 **6M**

b Explain the Erlang and Exponential noises with their PDF expressions. **CO4**

OR

a Illustrate the Clustering techniques for image segmentation with CO₅ **6M** L2 example.

b Discuss the basics of the intensity thresholding. **CO5** L2 **6M**

20

UNIT-V

9 a Explain the Spatial and Temporal Redundancy with suitable example.

CO6 L2 6M

b Compute the average length, compression and coding redundancy if the computer-generated image has the intensity distribution shown in table. If a natural 8-bit code is used to represent its 4 possible intensities.

Intensities r _k	Probabilities pk
r ₈₇ =87	0.25
r ₁₂₈ =128	0.47
r ₁₈₆ =186	0.25
r ₂₅₆ =87	0.03
r_k for $k \neq 87$, 128, 186, 256	0

CO6 L4 6M

L3

6M

OR

10 a For the image shown below, compute the degree of compression that can be achieved using Huffman coding of pixel values. Assume 2 bits to represent the pixel value.

 3 3 3 2

 2 3 3 3

 3 2 2 2

 2 1 1 0

b Explain the functional block diagram of a transform coding technique. CO6 L4 6M

*** END ***

2333